cs.AI updates on arXiv.org 09月17日
DoubleAgents:增强透明度的人工智能代理工具
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为DoubleAgents的智能代理规划工具,它通过用户干预、价值反映政策、丰富的状态可视化以及不确定性标志,增强了用户对系统的信任。通过模拟场景,用户可以在实际应用前进行演练、调整策略。研究表明,DoubleAgents能够提升用户对智能代理的依赖,并在实际应用中显示出其实用性和有效性。

arXiv:2509.12626v1 Announce Type: cross Abstract: Agentic workflows promise efficiency, but adoption hinges on whether people actually trust systems that act on their behalf. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse, refine policies, and calibrate their reliance before live use. We evaluate DoubleAgents in a two-day lab study (n=10), two deployments (n=2), and a technical evaluation. Results show that participants initially hesitated to delegate but grew more reliant as they experienced transparency, control, and adaptive learning during simulated cases. Deployment results demonstrate DoubleAgents' real-world relevance and usefulness, showing that the effort required scaled appropriately with task complexity and contextual data. We contribute trust-by-design patterns and mechanisms for proactive AI -- consistency, controllability, and explainability -- along with simulation as a safe path to build and calibrate trust over time.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能代理 透明度 用户信任 模拟场景 AI规划
相关文章