cs.AI updates on arXiv.org 09月17日
VPINN框架解决一维边值问题与偏微分方程
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于变分物理信息神经网络的框架,结合 Petrov-Galerkin 公式和深度神经网络解决一维奇点偏微分方程及涉及小参数的抛物线偏微分方程,采用非线性近似方法,测试函数局部化,提高数值稳定性和边界层捕捉准确性。

arXiv:2509.12271v1 Announce Type: cross Abstract: This work proposes a Variational Physics-Informed Neural Network (VPINN) framework that integrates the Petrov-Galerkin formulation with deep neural networks (DNNs) for solving one-dimensional singularly perturbed boundary value problems (BVPs) and parabolic partial differential equations (PDEs) involving one or two small parameters. The method adopts a nonlinear approximation in which the trial space is defined by neural network functions, while the test space is constructed from hat functions. The weak formulation is constructed using localized test functions, with interface penalty terms introduced to enhance numerical stability and accurately capture boundary layers. Dirichlet boundary conditions are imposed via hard constraints, and source terms are computed using automatic differentiation. Numerical experiments on benchmark problems demonstrate the effectiveness of the proposed method, showing significantly improved accuracy in both the $L_2$ and maximum norms compared to the standard VPINN approach for one-dimensional singularly perturbed differential equations (SPDEs).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VPINN 深度神经网络 一维偏微分方程 Petrov-Galerkin 数值稳定性
相关文章