cs.AI updates on arXiv.org 09月17日
GraphSAGE在银行交易网络分析中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文展示了GraphSAGE在银行非二分异构交易网络分析中的应用,通过在匿名客户和商户交易数据上构建交易网络并训练GraphSAGE模型生成节点嵌入,揭示了与地理和人口属性相关的可解释聚类,并展示了其在下游分类任务中的实用性。

arXiv:2509.12255v1 Announce Type: cross Abstract: Financial institutions increasingly require scalable tools to analyse complex transactional networks, yet traditional graph embedding methods struggle with dynamic, real-world banking data. This paper demonstrates the practical application of GraphSAGE, an inductive Graph Neural Network framework, to non-bipartite heterogeneous transaction networks within a banking context. Unlike transductive approaches, GraphSAGE scales well to large networks and can generalise to unseen nodes which is critical for institutions working with temporally evolving transactional data. We construct a transaction network using anonymised customer and merchant transactions and train a GraphSAGE model to generate node embeddings. Our exploratory work on the embeddings reveals interpretable clusters aligned with geographic and demographic attributes. Additionally, we illustrate their utility in downstream classification tasks by applying them to a money mule detection model where using these embeddings improves the prioritisation of high-risk accounts. Beyond fraud detection, our work highlights the adaptability of this framework to banking-scale networks, emphasising its inductive capability, scalability, and interpretability. This study provides a blueprint for financial organisations to harness graph machine learning for actionable insights in transactional ecosystems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GraphSAGE 交易网络分析 银行数据 图神经网络
相关文章