cs.AI updates on arXiv.org 09月17日
多模态模型提升糖尿病视网膜病变筛查效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究多模态大型语言模型在糖尿病视网膜病变检测中的应用,评估其对临床医生辅助的输出格式影响,并通过实验证明其在实际协作中具有显著优势。

arXiv:2509.13234v1 Announce Type: new Abstract: Diabetic retinopathy (DR) is a leading cause of blindness worldwide, and AI systems can expand access to fundus photography screening. Current FDA-cleared systems primarily provide binary referral outputs, where this minimal output may limit clinical trust and utility. Yet, determining the most effective output format to enhance clinician-AI performance is an empirical challenge that is difficult to assess at scale. We evaluated multimodal large language models (MLLMs) for DR detection and their ability to simulate clinical AI assistance across different output types. Two models were tested on IDRiD and Messidor-2: GPT-4o, a general-purpose MLLM, and MedGemma, an open-source medical model. Experiments included: (1) baseline evaluation, (2) simulated AI assistance with synthetic predictions, and (3) actual AI-to-AI collaboration where GPT-4o incorporated MedGemma outputs. MedGemma outperformed GPT-4o at baseline, achieving higher sensitivity and AUROC, while GPT-4o showed near-perfect specificity but low sensitivity. Both models adjusted predictions based on simulated AI inputs, but GPT-4o's performance collapsed with incorrect ones, whereas MedGemma remained more stable. In actual collaboration, GPT-4o achieved strong results when guided by MedGemma's descriptive outputs, even without direct image access (AUROC up to 0.96). These findings suggest MLLMs may improve DR screening pipelines and serve as scalable simulators for studying clinical AI assistance across varying output configurations. Open, lightweight models such as MedGemma may be especially valuable in low-resource settings, while descriptive outputs could enhance explainability and clinician trust in clinical workflows.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

糖尿病视网膜病变 人工智能 多模态模型 临床辅助 筛查效果
相关文章