cs.AI updates on arXiv.org 09月16日
深度CNN在音频分类中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文详细研究了深度卷积神经网络在音频分类中的应用,通过实验对比了多种音频特征在分类任务中的表现,发现梅尔频谱图和梅尔频率倒谱系数在深度CNN音频分类任务中表现最佳。

arXiv:2509.07756v2 Announce Type: replace-cross Abstract: Next to decision tree and k-nearest neighbours algorithms deep convolutional neural networks (CNNs) are widely used to classify audio data in many domains like music, speech or environmental sounds. To train a specific CNN various spectral and rhythm features like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCC), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams can be used as digital image input data for the neural network. The performance of these spectral and rhythm features for audio category level as well as audio class level classification is investigated in detail with a deep CNN and the ESC-50 dataset with 2,000 labeled environmental audio recordings using an end-to-end deep learning pipeline. The evaluated metrics accuracy, precision, recall and F1 score for multiclass classification clearly show that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCC) perform significantly better then the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 音频分类 卷积神经网络 梅尔频谱图 梅尔频率倒谱系数
相关文章