cs.AI updates on arXiv.org 09月16日
FairCoT:提升图像生成模型公平性的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FairCoT,一种通过多模态大语言模型中的思维链推理增强文本到图像模型公平性的新框架,旨在解决训练数据集偏见在生成内容中的传播问题,提升社会敏感场景下的图像生成公平性和多样性。

arXiv:2406.09070v4 Announce Type: replace-cross Abstract: In the domain of text-to-image generative models, biases inherent in training datasets often propagate into generated content, posing significant ethical challenges, particularly in socially sensitive contexts. We introduce FairCoT, a novel framework that enhances fairness in text to image models through Chain of Thought (CoT) reasoning within multimodal generative large language models. FairCoT employs iterative CoT refinement to systematically mitigate biases, and dynamically adjusts textual prompts in real time, ensuring diverse and equitable representation in generated images. By integrating iterative reasoning processes, FairCoT addresses the limitations of zero shot CoT in sensitive scenarios, balancing creativity with ethical responsibility. Experimental evaluations across popular text-to-image systems including DALLE and various Stable Diffusion variants, demonstrate that FairCoT significantly enhances fairness and diversity without sacrificing image quality or semantic fidelity. By combining robust reasoning, lightweight deployment, and extensibility to multiple models, FairCoT represents a promising step toward more socially responsible and transparent AI driven content generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像生成模型 公平性 思维链推理 AI生成内容
相关文章