cs.AI updates on arXiv.org 09月16日
轻量级3D物体追踪方法TrajTrack
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为TrajTrack的轻量级3D物体追踪方法,通过从历史边界框轨迹中学习运动连续性,在不依赖额外点云输入的情况下提升追踪精度。

arXiv:2509.11453v1 Announce Type: cross Abstract: LiDAR-based 3D single object tracking (3D SOT) is a critical task in robotics and autonomous systems. Existing methods typically follow frame-wise motion estimation or a sequence-based paradigm. However, the two-frame methods are efficient but lack long-term temporal context, making them vulnerable in sparse or occluded scenes, while sequence-based methods that process multiple point clouds gain robustness at a significant computational cost. To resolve this dilemma, we propose a novel trajectory-based paradigm and its instantiation, TrajTrack. TrajTrack is a lightweight framework that enhances a base two-frame tracker by implicitly learning motion continuity from historical bounding box trajectories alone-without requiring additional, costly point cloud inputs. It first generates a fast, explicit motion proposal and then uses an implicit motion modeling module to predict the future trajectory, which in turn refines and corrects the initial proposal. Extensive experiments on the large-scale NuScenes benchmark show that TrajTrack achieves new state-of-the-art performance, dramatically improving tracking precision by 4.48% over a strong baseline while running at 56 FPS. Besides, we also demonstrate the strong generalizability of TrajTrack across different base trackers. Video is available at https://www.bilibili.com/video/BV1ahYgzmEWP.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D物体追踪 运动连续性学习 轻量级框架 NuScenes基准测试
相关文章