cs.AI updates on arXiv.org 09月16日
电动汽车碰撞严重程度预测研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度表格学习的电动汽车碰撞严重程度预测框架,通过分析2017-2023年德克萨斯州真实碰撞数据,采用XGBoost和随机森林识别关键预测因素,并使用TabPFN、MambaNet和MambaAttention等深度表格模型进行基准测试,结果表明深度表格架构在预测碰撞严重程度方面具有潜力。

arXiv:2509.11449v1 Announce Type: cross Abstract: This study presents a deep tabular learning framework for predicting crash severity in electric vehicle (EV) collisions using real-world crash data from Texas (2017-2023). After filtering for electric-only vehicles, 23,301 EV-involved crash records were analyzed. Feature importance techniques using XGBoost and Random Forest identified intersection relation, first harmful event, person age, crash speed limit, and day of week as the top predictors, along with advanced safety features like automatic emergency braking. To address class imbalance, Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTEENN) resampling was applied. Three state-of-the-art deep tabular models, TabPFN, MambaNet, and MambaAttention, were benchmarked for severity prediction. While TabPFN demonstrated strong generalization, MambaAttention achieved superior performance in classifying severe injury cases due to its attention-based feature reweighting. The findings highlight the potential of deep tabular architectures for improving crash severity prediction and enabling data-driven safety interventions in EV crash contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电动汽车 碰撞预测 深度学习 表格模型 安全干预
相关文章