cs.AI updates on arXiv.org 09月16日
社交机器人辅助物理治疗决策研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究社交机器人在物理治疗中的应用,通过模拟和强化学习,开发出适应患者需求的决策模型,以辅助物理治疗。

arXiv:2509.11297v1 Announce Type: cross Abstract: Social robots offer a promising solution for autonomously guiding patients through physiotherapy exercise sessions, but effective deployment requires advanced decision-making to adapt to patient needs. A key challenge is the scarcity of patient behavior data for developing robust policies. To address this, we engaged 33 expert healthcare practitioners as patient proxies, using their interactions with our robot to inform a patient behavior model capable of generating exercise performance metrics and subjective scores on perceived exertion. We trained a reinforcement learning-based policy in simulation, demonstrating that it can adapt exercise instructions to individual exertion tolerances and fluctuating performance, while also being applicable to patients at different recovery stages with varying exercise plans.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

社交机器人 物理治疗 决策模型 强化学习 患者需求
相关文章