cs.AI updates on arXiv.org 09月16日
LARoPE:提升TTS文本语音对齐的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LARoPE的改进版RoPE,通过使用长度归一化索引计算相对距离,有效提升了文本语音对齐和TTS质量,在零样本TTS基准测试中取得了最佳词错误率。

arXiv:2509.11084v1 Announce Type: cross Abstract: Many recent text-to-speech (TTS) systems are built on transformer architectures and employ cross-attention mechanisms for text-speech alignment. Within these systems, rotary position embedding (RoPE) is commonly used to encode positional information in text and speech representations. In this work, we introduce length-aware RoPE (LARoPE), a simple yet effective extension of RoPE that improves text-speech alignment. Unlike RoPE, which relies on absolute indices, LARoPE computes relative distances between query and key positions using length-normalized indices. Experimental results show that LARoPE consistently outperforms RoPE, offering faster loss convergence, more accurate text-speech alignment, and higher overall TTS quality. Furthermore, LARoPE demonstrates greater resilience to variations in utterance duration and maintains stable performance in extended speech generation up to 30 seconds, whereas RoPE suffers from notable degradation. Notably, our method achieves a state-of-the-art word error rate on a standard zero-shot TTS benchmark.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LARoPE TTS 文本语音对齐 RoPE 语音合成
相关文章