cs.AI updates on arXiv.org 09月16日
LLMs在医学图像处理中的性能评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了大型语言模型(LLMs)在医学图像处理任务中的有效性,特别是胶质瘤分类和分割,并比较了其与传统卷积神经网络(CNNs)的性能。研究发现LLMs在空间理解和性能上仍有局限,需要进一步优化。

arXiv:2509.10683v1 Announce Type: cross Abstract: Large Language Models (LLMs) have shown strong performance in text-based healthcare tasks. However, their utility in image-based applications remains unexplored. We investigate the effectiveness of LLMs for medical imaging tasks, specifically glioma classification and segmentation, and compare their performance to that of traditional convolutional neural networks (CNNs). Using the BraTS 2020 dataset of multi-modal brain MRIs, we evaluated a general-purpose vision-language LLM (LLaMA 3.2 Instruct) both before and after fine-tuning, and benchmarked its performance against custom 3D CNNs. For glioma classification (Low-Grade vs. High-Grade), the CNN achieved 80% accuracy and balanced precision and recall. The general LLM reached 76% accuracy but suffered from a specificity of only 18%, often misclassifying Low-Grade tumors. Fine-tuning improved specificity to 55%, but overall performance declined (e.g., accuracy dropped to 72%). For segmentation, three methods - center point, bounding box, and polygon extraction, were implemented. CNNs accurately localized gliomas, though small tumors were sometimes missed. In contrast, LLMs consistently clustered predictions near the image center, with no distinction of glioma size, location, or placement. Fine-tuning improved output formatting but failed to meaningfully enhance spatial accuracy. The bounding polygon method yielded random, unstructured outputs. Overall, CNNs outperformed LLMs in both tasks. LLMs showed limited spatial understanding and minimal improvement from fine-tuning, indicating that, in their current form, they are not well-suited for image-based tasks. More rigorous fine-tuning or alternative training strategies may be needed for LLMs to achieve better performance, robustness, and utility in the medical space.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 医学图像处理 胶质瘤 CNNs
相关文章