cs.AI updates on arXiv.org 09月16日
DRL优化投资组合:拓展视野提升效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合现有资产利用与探索新投资机会的DRL投资组合优化方法,通过双代理策略动态平衡目标,以适应市场变化并提升投资组合表现。实验结果显示,该方法优于现有策略和基线方法。

arXiv:2509.10531v1 Announce Type: cross Abstract: Portfolio optimization is essential for balancing risk and return in financial decision-making. Deep Reinforcement Learning (DRL) has stood out as a cutting-edge tool for portfolio optimization that learns dynamic asset allocation using trial-and-error interactions. However, most DRL-based methods are restricted to allocating assets within a pre-defined investment universe and overlook exploring new opportunities. This study introduces an investment landscape that integrates exploiting existing assets with exploring new investment opportunities in an extended universe. The proposed approach leverages two DRL agents and dynamically balances these objectives to adapt to evolving markets while enhancing portfolio performance. One agent allocates assets within the existing universe, while another assists in exploring new opportunities in the extended universe. The effciency of the proposed methodology is determined using two real-world market data sets. The experiments demonstrate the superiority of the suggested approach against the state-of-the-art portfolio strategies and baseline methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DRL 投资组合优化 市场适应性 资产配置
相关文章