cs.AI updates on arXiv.org 09月16日
CNN在音频分类中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了卷积神经网络(CNN)在音频分类中的应用,通过实验对比了多种音频特征表示方法,发现梅尔频谱图和梅尔频谱倒谱系数(MFCC)在音频分类任务中表现最佳。

arXiv:2410.06927v2 Announce Type: cross Abstract: Convolutional neural networks (CNNs) are widely used in computer vision. They can be used not only for conventional digital image material to recognize patterns, but also for feature extraction from digital imagery representing spectral and rhythm features extracted from time-domain digital audio signals for the acoustic classification of sounds. Different spectral and rhythm feature representations like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCCs), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams are investigated in terms of the audio classification performance using a deep convolutional neural network. It can be clearly shown that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCCs) perform significantly better than the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs. The experiments were carried out with the aid of the ESC-50 dataset with 2,000 labeled environmental audio recordings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

卷积神经网络 音频分类 梅尔频谱图 梅尔频谱倒谱系数 CNN应用
相关文章