cs.AI updates on arXiv.org 09月16日
隐私保护下的在上下文学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对大型语言模型在上下文学习中的隐私泄露风险,提出一种结合公共数据的隐私保护在上下文学习算法,在保证隐私安全的同时提升模型效用,并通过实验证明其有效性和鲁棒性。

arXiv:2509.10932v1 Announce Type: new Abstract: In-context learning (ICL) in Large Language Models (LLMs) has shown remarkable performance across various tasks without requiring fine-tuning. However, recent studies have highlighted the risk of private data leakage through the prompt in ICL, especially when LLMs are exposed to malicious attacks. While differential privacy (DP) provides strong privacy guarantees, it often significantly reduces the utility of in-context learning (ICL). To address this challenge, we incorporate task-related public data into the ICL framework while maintaining the DP guarantee. Based on this approach, we propose a private in-context learning algorithm that effectively balances privacy protection and model utility. Through experiments, we demonstrate that our approach significantly improves the utility of private ICL with the assistance of public data. Additionally, we show that our method is robust against membership inference attacks, demonstrating empirical privacy protection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私保护 在上下文学习 大型语言模型 公共数据 算法
相关文章