cs.AI updates on arXiv.org 09月15日
ADSeqGAN:小样本数据集分子生成新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ADSeqGAN的新型分子生成方法,针对小样本数据集中的分子生成问题,通过集成辅助随机森林分类器,显著提高了分子生成质量和类特异性。该方法在核酸结合剂、中枢神经系统药物和CB1配体设计等应用中表现出优越性能。

arXiv:2502.16446v2 Announce Type: replace-cross Abstract: In this work, we introduce Auxiliary Discriminator Sequence Generative Adversarial Networks (ADSeqGAN), a novel approach for molecular generation in small-sample datasets. Traditional generative models often struggle with limited training data, particularly in drug discovery, where molecular datasets for specific therapeutic targets, such as nucleic acids binders and central nervous system (CNS) drugs, are scarce. ADSeqGAN addresses this challenge by integrating an auxiliary random forest classifier as an additional discriminator into the GAN framework, significantly improves molecular generation quality and class specificity. Our method incorporates pretrained generator and Wasserstein distance to enhance training stability and diversity. We evaluate ADSeqGAN across three representative cases. First, on nucleic acid- and protein-targeting molecules, ADSeqGAN shows superior capability in generating nucleic acid binders compared to baseline models. Second, through oversampling, it markedly improves CNS drug generation, achieving higher yields than traditional de novo models. Third, in cannabinoid receptor type 1 (CB1) ligand design, ADSeqGAN generates novel druglike molecules, with 32.8\% predicted actives surpassing hit rates of CB1-focused and general-purpose libraries when assessed by a target-specific LRIP-SF scoring function. Overall, ADSeqGAN offers a versatile framework for molecular design in data-scarce scenarios, with demonstrated applications in nucleic acid binders, CNS drugs, and CB1 ligands.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ADSeqGAN 分子生成 小样本数据集 随机森林分类器 分子设计
相关文章