cs.AI updates on arXiv.org 09月15日
CDQAC算法优化车间调度问题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的离线强化学习算法CDQAC,用于解决车间调度问题,通过直接从历史数据学习有效调度策略,提高样本效率,并在不同数据源上表现优异。

arXiv:2509.10303v1 Announce Type: cross Abstract: The Job-Shop Scheduling Problem (JSP) and Flexible Job-Shop Scheduling Problem (FJSP), are canonical combinatorial optimization problems with wide-ranging applications in industrial operations. In recent years, many online reinforcement learning (RL) approaches have been proposed to learn constructive heuristics for JSP and FJSP. Although effective, these online RL methods require millions of interactions with simulated environments that may not capture real-world complexities, and their random policy initialization leads to poor sample efficiency. To address these limitations, we introduce Conservative Discrete Quantile Actor-Critic (CDQAC), a novel offline RL algorithm that learns effective scheduling policies directly from historical data, eliminating the need for costly online interactions, while maintaining the ability to improve upon suboptimal training data. CDQAC couples a quantile-based critic with a delayed policy update, estimating the return distribution of each machine-operation pair rather than selecting pairs outright. Our extensive experiments demonstrate CDQAC's remarkable ability to learn from diverse data sources. CDQAC consistently outperforms the original data-generating heuristics and surpasses state-of-the-art offline and online RL baselines. In addition, CDQAC is highly sample efficient, requiring only 10-20 training instances to learn high-quality policies. Surprisingly, we find that CDQAC performs better when trained on data generated by a random heuristic than when trained on higher-quality data from genetic algorithms and priority dispatching rules.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

车间调度 强化学习 样本效率 离线算法 调度策略
相关文章