cs.AI updates on arXiv.org 09月15日
零样本流程实现高精度REC
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种零样本流程实现指代表达理解(REC),无需特定训练即可达到与现有方法相媲美或更优的性能,并通过验证显著优于基于选择的提示方法。

arXiv:2509.09958v1 Announce Type: cross Abstract: Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

指代表达理解 零样本流程 视觉语言模型 性能提升
相关文章