cs.AI updates on arXiv.org 09月15日
LLM生成旅行日记:新方法与评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于大型语言模型(LLM)的生成旅行日记的新方案,通过开放数据源合成日记,并引入一队群现实得分评估方法,验证了LLM生成日记的可行性与现实性。

arXiv:2509.09710v1 Announce Type: cross Abstract: This study introduces a Large Language Model (LLM) scheme for generating individual travel diaries in agent-based transportation models. While traditional approaches rely on large quantities of proprietary household travel surveys, the method presented in this study generates personas stochastically from open-source American Community Survey (ACS) and Smart Location Database (SLD) data, then synthesizes diaries through direct prompting. This study features a novel one-to-cohort realism score: a composite of four metrics (Trip Count Score, Interval Score, Purpose Score, and Mode Score) validated against the Connecticut Statewide Transportation Study (CSTS) diaries, matched across demographic variables. The validation utilizes Jensen-Shannon Divergence to measure distributional similarities between generated and real diaries. When compared to diaries generated with classical methods (Negative Binomial for trip generation; Multinomial Logit for mode/purpose) calibrated on the validation set, LLM-generated diaries achieve comparable overall realism (LLM mean: 0.485 vs. 0.455). The LLM excels in determining trip purpose and demonstrates greater consistency (narrower realism score distribution), while classical models lead in numerical estimates of trip count and activity duration. Aggregate validation confirms the LLM's statistical representativeness (LLM mean: 0.612 vs. 0.435), demonstrating LLM's zero-shot viability and establishing a quantifiable metric of diary realism for future synthetic diary evaluation systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 旅行日记 数据合成 现实性评估
相关文章