cs.AI updates on arXiv.org 09月15日
信息理论框架助力强化学习故障诊断
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种信息理论框架,揭示强化学习的基本动态,并提供实际方法诊断部署时异常。通过分析机器人控制任务中的状态-动作互信息模式,展示了成功学习的信息特征,并证明了信息度量可以区分诊断系统故障。

arXiv:2509.10423v1 Announce Type: new Abstract: Reinforcement Learning (RL) agents deployed in real-world environments face degradation from sensor faults, actuator wear, and environmental shifts, yet lack intrinsic mechanisms to detect and diagnose these failures. We present an information-theoretic framework that reveals both the fundamental dynamics of RL and provides practical methods for diagnosing deployment-time anomalies. Through analysis of state-action mutual information patterns in a robotic control task, we first demonstrate that successful learning exhibits characteristic information signatures: mutual information between states and actions steadily increases from 0.84 to 2.83 bits (238% growth) despite growing state entropy, indicating that agents develop increasingly selective attention to task-relevant patterns. Intriguingly, states, actions and next states joint mutual information, MI(S,A;S'), follows an inverted U-curve, peaking during early learning before declining as the agent specializes suggesting a transition from broad exploration to efficient exploitation. More immediately actionable, we show that information metrics can differentially diagnose system failures: observation-space, i.e., states noise (sensor faults) produces broad collapses across all information channels with pronounced drops in state-action coupling, while action-space noise (actuator faults) selectively disrupts action-outcome predictability while preserving state-action relationships. This differential diagnostic capability demonstrated through controlled perturbation experiments enables precise fault localization without architectural modifications or performance degradation. By establishing information patterns as both signatures of learning and diagnostic for system health, we provide the foundation for adaptive RL systems capable of autonomous fault detection and policy adjustment based on information-theoretic principles.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 故障诊断 信息理论 机器人控制 互信息
相关文章