cs.AI updates on arXiv.org 09月15日
基于因果性的XAI变量重要性度量与应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于实际因果性的变量重要性度量方法,评估XAI工具,并设计新型XAI工具B-ReX,在预测布尔函数值的应用中展现优越性。

arXiv:2509.09982v1 Announce Type: new Abstract: Evaluating explainable AI (XAI) approaches is a challenging task in general, due to the subjectivity of explanations. In this paper, we focus on tabular data and the specific use case of AI models predicting the values of Boolean functions. We extend the previous work in this domain by proposing a formal and precise measure of importance of variables based on actual causality, and we evaluate state-of-the-art XAI tools against this measure. We also present a novel XAI tool B-ReX, based on the existing tool ReX, and demonstrate that it is superior to other black-box XAI tools on a large-scale benchmark. Specifically, B-ReX achieves a Jensen-Shannon divergence of 0.072 $\pm$ 0.012 on random 10-valued Boolean formulae

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XAI 变量重要性度量 因果性 布尔函数预测 B-ReX
相关文章