cs.AI updates on arXiv.org 09月12日
动态环境下的概念漂移解释方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种通过分析基于群体的反事实解释(GCEs)的时序演变来解释动态环境中的概念漂移的方法。该方法追踪GCEs聚类中心及其关联的反事实动作向量在漂移前后的变化,揭示模型决策边界及其内在原因的结构变化。

arXiv:2509.09616v1 Announce Type: cross Abstract: Machine learning models in dynamic environments often suffer from concept drift, where changes in the data distribution degrade performance. While detecting this drift is a well-studied topic, explaining how and why the model's decision-making logic changes still remains a significant challenge. In this paper, we introduce a novel methodology to explain concept drift by analyzing the temporal evolution of group-based counterfactual explanations (GCEs). Our approach tracks shifts in the GCEs' cluster centroids and their associated counterfactual action vectors before and after a drift. These evolving GCEs act as an interpretable proxy, revealing structural changes in the model's decision boundary and its underlying rationale. We operationalize this analysis within a three-layer framework that synergistically combines insights from the data layer (distributional shifts), the model layer (prediction disagreement), and our proposed explanation layer. We show that such holistic view allows for a more comprehensive diagnosis of drift, making it possible to distinguish between different root causes, such as a spatial data shift versus a re-labeling of concepts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

概念漂移 动态环境 反事实解释 模型解释 数据分布
相关文章