cs.AI updates on arXiv.org 09月12日
ENSI:高效安全推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于协同设计的ENSI安全推理框架,用于支持大型语言模型(LLMs)的隐私保护机器学习,通过优化编码策略和引入sigmoid注意力机制,显著降低了加密矩阵乘法的计算复杂度,提高了推理速度。

arXiv:2509.09424v1 Announce Type: cross Abstract: Secure inference enables privacy-preserving machine learning by leveraging cryptographic protocols that support computations on sensitive user data without exposing it. However, integrating cryptographic protocols with large language models (LLMs) presents significant challenges, as the inherent complexity of these protocols, together with LLMs' massive parameter scale and sophisticated architectures, severely limits practical usability. In this work, we propose ENSI, a novel non-interactive secure inference framework for LLMs, based on the principle of co-designing the cryptographic protocols and LLM architecture. ENSI employs an optimized encoding strategy that seamlessly integrates CKKS scheme with a lightweight LLM variant, BitNet, significantly reducing the computational complexity of encrypted matrix multiplications. In response to the prohibitive computational demands of softmax under homomorphic encryption (HE), we pioneer the integration of the sigmoid attention mechanism with HE as a seamless, retraining-free alternative. Furthermore, by embedding the Bootstrapping operation within the RMSNorm process, we efficiently refresh ciphertexts while markedly decreasing the frequency of costly bootstrapping invocations. Experimental evaluations demonstrate that ENSI achieves approximately an 8x acceleration in matrix multiplications and a 2.6x speedup in softmax inference on CPU compared to state-of-the-art method, with the proportion of bootstrapping is reduced to just 1%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

安全推理 加密协议 大型语言模型 隐私保护 计算优化
相关文章