cs.AI updates on arXiv.org 09月12日
SQAP-VLA:VLA模型高效加速框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SQAP-VLA,一种结构化、无需训练的VLA推理加速框架,通过同时实现量化与词元剪枝,有效提升VLA模型计算效率和推理速度,同时保持模型性能。

arXiv:2509.09090v1 Announce Type: cross Abstract: Vision-Language-Action (VLA) models exhibit unprecedented capabilities for embodied intelligence. However, their extensive computational and memory costs hinder their practical deployment. Existing VLA compression and acceleration approaches conduct quantization or token pruning in an ad-hoc manner but fail to enable both for a holistic efficiency improvement due to an observed incompatibility. This work introduces SQAP-VLA, the first structured, training-free VLA inference acceleration framework that simultaneously enables state-of-the-art quantization and token pruning. We overcome the incompatibility by co-designing the quantization and token pruning pipeline, where we propose new quantization-aware token pruning criteria that work on an aggressively quantized model while improving the quantizer design to enhance pruning effectiveness. When applied to standard VLA models, SQAP-VLA yields significant gains in computational efficiency and inference speed while successfully preserving core model performance, achieving a $\times$1.93 speedup and up to a 4.5\% average success rate enhancement compared to the original model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VLA模型 加速框架 量化与剪枝
相关文章