cs.AI updates on arXiv.org 09月12日
多技术融合提升语言模型安全性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究多种对齐技术对OPT-350M语言模型安全性和有用性的提升效果,通过实验验证了SFT+DPO模型的优越性,并分析了数据噪声、资源限制等挑战。

arXiv:2509.09055v1 Announce Type: cross Abstract: This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 对齐技术 SFT+DPO
相关文章