cs.AI updates on arXiv.org 09月12日
神经网络样本不确定性量化新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于不同模型预测下类别概率分布信噪比的直观不确定性估计与分解框架,引入了一种基于集成置信度的方差门控度量,以讨论委员会机器多样性崩溃的存在。

arXiv:2509.08846v1 Announce Type: cross Abstract: Evaluation of per-sample uncertainty quantification from neural networks is essential for decision-making involving high-risk applications. A common approach is to use the predictive distribution from Bayesian or approximation models and decompose the corresponding predictive uncertainty into epistemic (model-related) and aleatoric (data-related) components. However, additive decomposition has recently been questioned. In this work, we propose an intuitive framework for uncertainty estimation and decomposition based on the signal-to-noise ratio of class probability distributions across different model predictions. We introduce a variance-gated measure that scales predictions by a confidence factor derived from ensembles. We use this measure to discuss the existence of a collapse in the diversity of committee machines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 不确定性量化 模型预测 信噪比 集成学习
相关文章