cs.AI updates on arXiv.org 09月12日
PerFairX:平衡LLM推荐中个人化和公平性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PerFairX框架,量化LLM推荐系统中个人化和人口统计公平性的权衡,以ChatGPT和DeepSeek为例,分析其推荐效果。

arXiv:2509.08829v1 Announce Type: cross Abstract: The integration of Large Language Models (LLMs) into recommender systems has enabled zero-shot, personality-based personalization through prompt-based interactions, offering a new paradigm for user-centric recommendations. However, incorporating user personality traits via the OCEAN model highlights a critical tension between achieving psychological alignment and ensuring demographic fairness. To address this, we propose PerFairX, a unified evaluation framework designed to quantify the trade-offs between personalization and demographic equity in LLM-generated recommendations. Using neutral and personality-sensitive prompts across diverse user profiles, we benchmark two state-of-the-art LLMs, ChatGPT and DeepSeek, on movie (MovieLens 10M) and music (Last.fm 360K) datasets. Our results reveal that personality-aware prompting significantly improves alignment with individual traits but can exacerbate fairness disparities across demographic groups. Specifically, DeepSeek achieves stronger psychological fit but exhibits higher sensitivity to prompt variations, while ChatGPT delivers stable yet less personalized outputs. PerFairX provides a principled benchmark to guide the development of LLM-based recommender systems that are both equitable and psychologically informed, contributing to the creation of inclusive, user-centric AI applications in continual learning contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM推荐 PerFairX框架 个人化 公平性
相关文章