cs.AI updates on arXiv.org 09月11日
新型正态性正则化损失提升文本到图像模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型正态性正则化损失,促进样本与标准高斯分布对齐,提高文本到图像模型在潜在空间优化任务中的性能。该方法结合空间域的基于矩的正则化和频域的基于功率谱的正则化,有效防止奖励黑客行为并加速收敛。

arXiv:2509.07027v2 Announce Type: replace-cross Abstract: We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

正态性正则化 文本到图像模型 优化
相关文章