cs.AI updates on arXiv.org 09月11日
概率模型不确定性量化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种概率模型不确定性量化框架,重点关注高斯过程潜在变量模型,并采用随机傅里叶特征的高斯过程进行预测分布近似。通过理论推导和蒙特卡洛采样方法,评估不确定性估计对预测可靠性的影响。

arXiv:2509.05877v2 Announce Type: replace-cross Abstract: Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不确定性量化 概率模型 高斯过程 预测分布 蒙特卡洛采样
相关文章