arXiv:2506.23771v2 Announce Type: replace-cross Abstract: Reinforcement Learning (RL) is increasingly used in autonomous driving (AD) and shows clear advantages. However, most RL-based AD methods overlook policy structure design. An RL policy that only outputs short-timescale vehicle control commands results in fluctuating driving behavior due to fluctuations in network outputs, while one that only outputs long-timescale driving goals cannot achieve unified optimality of driving behavior and control. Therefore, we propose a multi-timescale hierarchical reinforcement learning approach. Our approach adopts a hierarchical policy structure, where high- and low-level RL policies are unified-trained to produce long-timescale motion guidance and short-timescale control commands, respectively. Therein, motion guidance is explicitly represented by hybrid actions to capture multimodal driving behaviors on structured road and support incremental low-level extend-state updates. Additionally, a hierarchical safety mechanism is designed to ensure multi-timescale safety. Evaluation in simulator-based and HighD dataset-based highway multi-lane scenarios demonstrates that our approach significantly improves AD performance, effectively increasing driving efficiency, action consistency and safety.
