cs.AI updates on arXiv.org 09月11日
量子机器学习优化数据库查询
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于量子机器学习的数据库查询优化方法,通过量子卡迪纳尔估计(QCardEst)和量子卡迪纳尔校正(QCardCorr)技术,显著提升了数据库查询性能。

arXiv:2509.08817v1 Announce Type: cross Abstract: Cardinality estimation is an important part of query optimization in DBMS. We develop a Quantum Cardinality Estimation (QCardEst) approach using Quantum Machine Learning with a Hybrid Quantum-Classical Network. We define a compact encoding for turning SQL queries into a quantum state, which requires only qubits equal to the number of tables in the query. This allows the processing of a complete query with a single variational quantum circuit (VQC) on current hardware. In addition, we compare multiple classical post-processing layers to turn the probability vector output of VQC into a cardinality value. We introduce Quantum Cardinality Correction QCardCorr, which improves classical cardinality estimators by multiplying the output with a factor generated by a VQC to improve the cardinality estimation. With QCardCorr, we have an improvement over the standard PostgreSQL optimizer of 6.37 times for JOB-light and 8.66 times for STATS. For JOB-light we even outperform MSCN by a factor of 3.47.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据库查询优化 量子机器学习 卡迪纳尔估计 数据库性能
相关文章