cs.AI updates on arXiv.org 09月11日
X-Teaming M2S:基于语言模型的自动化模板优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出X-Teaming M2S,一种通过语言模型指导的演化来自动发现和优化M2S模板的框架,实现红队演练的迭代压缩,并通过实验验证了其有效性和鲁棒性。

arXiv:2509.08729v1 Announce Type: cross Abstract: Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $\theta = 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

M2S 红队演练 自动化模板 语言模型 演化算法
相关文章