cs.AI updates on arXiv.org 09月11日
SI-EDTL:多车检测的深度迁移学习模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SI-EDTL的两阶段群智能集成深度迁移学习模型,用于无人机图像中的多车辆检测。该模型结合了三种预训练的Faster R-CNN特征提取器和五种迁移分类器,通过加权平均对区域进行分类。使用鲸鱼优化算法优化超参数,实现准确率、精确率和召回率的平衡。在AU-AIR无人机数据集上,SI-EDTL优于现有方法。

arXiv:2509.08026v1 Announce Type: cross Abstract: This paper introduces SI-EDTL, a two-stage swarm intelligence ensemble deep transfer learning model for detecting multiple vehicles in UAV images. It combines three pre-trained Faster R-CNN feature extractor models (InceptionV3, ResNet50, GoogLeNet) with five transfer classifiers (KNN, SVM, MLP, C4.5, Na\"ive Bayes), resulting in 15 different base learners. These are aggregated via weighted averaging to classify regions as Car, Van, Truck, Bus, or background. Hyperparameters are optimized with the whale optimization algorithm to balance accuracy, precision, and recall. Implemented in MATLAB R2020b with parallel processing, SI-EDTL outperforms existing methods on the AU-AIR UAV dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度迁移学习 多车辆检测 无人机图像 SI-EDTL模型 鲸鱼优化算法
相关文章