cs.AI updates on arXiv.org 09月08日
GNN模型节点去除:隐私保护新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出三种新的节点去除方法,有效利用图拓扑,保护GNN模型中敏感节点的隐私。

arXiv:2509.04785v1 Announce Type: cross Abstract: With increasing concerns about privacy attacks and potential sensitive information leakage, researchers have actively explored methods to efficiently remove sensitive training data and reduce privacy risks in graph neural network (GNN) models. Node unlearning has emerged as a promising technique for protecting the privacy of sensitive nodes by efficiently removing specific training node information from GNN models. However, existing node unlearning methods either impose restrictions on the GNN structure or do not effectively utilize the graph topology for node unlearning. Some methods even compromise the graph's topology, making it challenging to achieve a satisfactory performance-complexity trade-off. To address these issues and achieve efficient unlearning for training node removal in GNNs, we propose three novel node unlearning methods: Class-based Label Replacement, Topology-guided Neighbor Mean Posterior Probability, and Class-consistent Neighbor Node Filtering. Among these methods, Topology-guided Neighbor Mean Posterior Probability and Class-consistent Neighbor Node Filtering effectively leverage the topological features of the graph, resulting in more effective node unlearning. To validate the superiority of our proposed methods in node unlearning, we conducted experiments on three benchmark datasets. The evaluation criteria included model utility, unlearning utility, and unlearning efficiency. The experimental results demonstrate the utility and efficiency of the proposed methods and illustrate their superiority compared to state-of-the-art node unlearning methods. Overall, the proposed methods efficiently remove sensitive training nodes and protect the privacy information of sensitive nodes in GNNs. The findings contribute to enhancing the privacy and security of GNN models and provide valuable insights into the field of node unlearning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GNN 节点去除 隐私保护 图拓扑 节点去学习
相关文章