cs.AI updates on arXiv.org 09月08日
LLM信息安全意识评估与提升策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对大型语言模型(LLM)信息安全意识(ISA)的自动评估方法,并针对现有模型存在的安全风险提出了改进策略。

arXiv:2411.13207v2 Announce Type: replace-cross Abstract: The popularity of large language models (LLMs) continues to grow, and LLM-based assistants have become ubiquitous. Information security awareness (ISA) is an important yet underexplored safety aspect of LLMs. ISA encompasses LLMs' security knowledge, which has been explored in the past, as well as attitudes and behaviors, which are crucial to LLMs' ability to understand implicit security context and reject unsafe requests that may cause the LLM to fail the user. We present an automated method for measuring the ISA of LLMs, which covers all 30 security topics in a mobile ISA taxonomy, using realistic scenarios that create tension between implicit security implications and user satisfaction. Applying this method to leading LLMs, we find that most of the popular models exhibit only medium to low levels of ISA, exposing their users to cybersecurity threats. Smaller variants of the same model family are significantly riskier, while newer versions show no consistent ISA improvement, suggesting that providers are not actively working toward mitigating this issue. These results reveal a widespread vulnerability affecting current LLM deployments: the majority of popular models, and particularly their smaller variants, may systematically endanger users. We propose a practical mitigation: incorporating our security awareness instruction into model system prompts to help LLMs better detect and reject unsafe requests.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 信息安全意识 评估方法 安全风险 改进策略
相关文章