cs.AI updates on arXiv.org 09月08日
超越I-Con:新型损失函数探索与优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Beyond I-Con框架,通过探索替代统计散度和相似性核,系统性地发现新的损失函数。在无监督聚类、监督对比学习和降维任务中,该方法均取得显著成果,强调了在表示学习优化中考虑散度和相似性核选择的重要性。

arXiv:2509.04734v1 Announce Type: cross Abstract: The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences and similarity kernels. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) on supervised contrastive learning, we outperform the standard approach by using TV and a distance-based similarity kernel instead of KL and an angular kernel; (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded f-divergence. Our results highlight the importance of considering divergence and similarity kernel choices in representation learning optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Beyond I-Con 损失函数 统计散度 相似性核 表示学习
相关文章