cs.AI updates on arXiv.org 09月08日
CoVeR:新型解码策略提升推理任务性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型解码策略CoVeR,结合自回归预训练模型和符合预测框架,在复杂推理任务中实现高性能。CoVeR在保证高覆盖概率的同时,有效平衡搜索效率和多样化轨迹需求,尤其适用于涉及长尾序列的复杂应用。

arXiv:2509.04733v1 Announce Type: cross Abstract: Autoregressive pre-trained models combined with decoding methods have achieved impressive performance on complex reasoning tasks. While mainstream decoding strategies such as beam search can generate plausible candidate sets, they often lack provable coverage guarantees, and struggle to effectively balance search efficiency with the need for versatile trajectories, particularly those involving long-tail sequences that are essential in certain real-world applications. To address these limitations, we propose \textsc{CoVeR}, a novel model-free decoding strategy wihtin the conformal prediction framework that simultaneously maintains a compact search space and ensures high coverage probability over desirable trajectories. Theoretically, we establish a PAC-style generalization bound, guaranteeing that \textsc{CoVeR} asymptotically achieves a coverage rate of at least $1 - \alpha$ for any target level $\alpha \in (0,1)$.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CoVeR 解码策略 推理任务 自回归预训练模型 长尾序列
相关文章