cs.AI updates on arXiv.org 09月08日
神经类器官生物智能体训练环境设计
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对神经类器官生物智能体的训练环境框架,通过设计三种不同复杂度的虚拟环境,研究学习机制,并利用大型语言模型进行实验协议的自动化生成与优化。

arXiv:2509.04633v1 Announce Type: cross Abstract: As the complexity of artificial agents increases, the design of environments that can effectively shape their behavior and capabilities has become a critical research frontier. We propose a framework that extends this principle to a novel class of agents: biological neural networks in the form of neural organoids. This paper introduces three scalable, closed-loop virtual environments designed to train organoid-based biological agents and probe the underlying mechanisms of learning, such as long-term potentiation (LTP) and long-term depression (LTD). We detail the design of three distinct task environments with increasing complexity: (1) a conditional avoidance task, (2) a one-dimensional predator-prey scenario, and (3) a replication of the classic Pong game. For each environment, we formalize the state and action spaces, the sensory encoding and motor decoding mechanisms, and the feedback protocols based on predictable (reward) and unpredictable (punishment) stimulation. Furthermore, we propose a novel meta-learning approach where a Large Language Model (LLM) is used to automate the generation and optimization of experimental protocols, scaling the process of environment and curriculum design. Finally, we outline a multi-modal approach for evaluating learning by measuring synaptic plasticity at electrophysiological, cellular, and molecular levels. This work bridges the gap between computational neuroscience and agent-based AI, offering a unique platform for studying embodiment, learning, and intelligence in a controlled biological substrate.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经类器官 生物智能体 训练环境 学习机制 大型语言模型
相关文章