cs.AI updates on arXiv.org 09月08日
表征相似度度量在神经科学和AI中的应用比较
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种评估表征相似度度量的定量框架,对比了RSA、线性预测性、Procrustes和软匹配等常见度量在区分不同模型家族和训练方式下的性能。结果表明,软匹配在映射方法中表现最佳,RSA等非拟合方法也具有较强区分力。

arXiv:2509.04622v1 Announce Type: cross Abstract: Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表征相似度度量 RSA 模型家族 训练方式
相关文章