cs.AI updates on arXiv.org 09月08日
深度学习神经影像稳定性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过FastSurfer研究深度学习在神经影像中的数值稳定性,发现其训练过程中的变异性,并探讨其作为数据增强策略在脑龄回归中的应用。

arXiv:2509.05238v1 Announce Type: cross Abstract: Deep learning (DL) is rapidly advancing neuroimaging by achieving state-of-the-art performance with reduced computation times. Yet the numerical stability of DL models -- particularly during training -- remains underexplored. While inference with DL is relatively stable, training introduces additional variability primarily through iterative stochastic optimization. We investigate this training-time variability using FastSurfer, a CNN-based whole-brain segmentation pipeline. Controlled perturbations are introduced via floating point perturbations and random seeds. We find that: (i) FastSurfer exhibits higher variability compared to that of a traditional neuroimaging pipeline, suggesting that DL inherits and is particularly susceptible to sources of instability present in its predecessors; (ii) ensembles generated with perturbations achieve performance similar to an unperturbed baseline; and (iii) variability effectively produces ensembles of numerical model families that can be repurposed for downstream applications. As a proof of concept, we demonstrate that numerical ensembles can be used as a data augmentation strategy for brain age regression. These findings position training-time variability not only as a reproducibility concern but also as a resource that can be harnessed to improve robustness and enable new applications in neuroimaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 神经影像 数值稳定性 脑龄回归 数据增强
相关文章