OpenAI blog 09月06日
GPT-2模型微调:人类反馈与偏好匹配
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了对GPT-2语言模型进行微调的过程,通过人类反馈成功匹配外部标签者的偏好,并针对总结任务进行了优化。模型学习从输入中复制句子,以简化任务,并强调了机器与人类沟通的重要性。

We’ve fine-tuned the 774M parameter GPT-2 language model using human feedback for various tasks, successfully matching the preferences of the external human labelers, though those preferences did not always match our own. Specifically, for summarization tasks the labelers preferred sentences copied wholesale from the input (we’d only asked them to ensure accuracy), so our models learned to copy. Summarization required 60k human labels; simpler tasks which continue text in various styles required only 5k. Our motivation is to move safety techniques closer to the general task of “machines talking to humans,” which we believe is key to extracting information about human values.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GPT-2 模型微调 人类反馈 偏好匹配 机器与人类沟通
相关文章