MarkTechPost@AI 09月06日
阿里发布千亿参数大模型Qwen3-Max,性能与长文本处理能力突出
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

阿里巴巴的Qwen团队发布了其最新旗舰大语言模型Qwen3-Max-Preview(Instruct),参数量超过一万亿,是迄今为止最大规模的模型。该模型可通过Qwen Chat、阿里云API、OpenRouter以及Hugging Face的AnyCoder工具访问。尽管行业趋势偏向更小巧高效的模型,阿里选择向上拓展模型规模,展现了其技术实力与对万亿参数研究的投入。Qwen3-Max拥有超过一万亿的参数和高达262,144个token的上下文窗口,并支持上下文缓存以提高效率。在基准测试中,它优于Qwen3-235B,并与Claude Opus 4等模型表现相当。该模型采用基于token的阶梯式定价,对于小任务成本效益高,但长上下文任务价格昂贵。其闭源模式限制了在研究和开源社区的广泛采用。

🚀 **首个万亿参数Qwen模型:** Qwen3-Max是阿里推出的首个参数量超过一万亿的大语言模型,标志着其在模型规模上的新突破,成为迄今为止最大、最先进的模型。

📚 **超长上下文处理能力:** 该模型支持高达262,144个token的上下文窗口,并集成上下文缓存技术,使其能够处理极长的文档和进行多轮对话,远超许多现有商用模型。

🏆 **强劲的基准测试表现:** Qwen3-Max在SuperGPQA、AIME25、LiveCodeBench v6等多个基准测试中表现出色,不仅超越了之前的Qwen3-235B模型,还能与Claude Opus 4、Kimi K2和Deepseek-V3.1等领先模型相媲美,展现了其在推理、编码和通用任务上的竞争力。

💡 **涌现的推理能力:** 尽管模型设计初衷并非仅侧重于推理,但早期结果显示,Qwen3-Max在处理复杂任务时展现出了结构化的推理能力,这为其应用场景增加了更多可能性。

🔒 **闭源与定价模式:** Qwen3-Max采用闭源策略,仅通过API提供服务,并实行基于token的阶梯式定价。这种模式在处理小型任务时具有成本效益,但对于需要大量上下文的复杂任务,成本会显著增加,这可能影响其在更广泛研究和开发社区中的普及。

Alibaba’s Qwen Team unveiled Qwen3-Max-Preview (Instruct), a new flagship large language model with over one trillion parameters—their largest to date. It is accessible through Qwen Chat, Alibaba Cloud API, OpenRouter, and as default in Hugging Face’s AnyCoder tool.

How does it fit in today’s LLM landscape?

This milestone comes at a time when the industry is trending toward smaller, more efficient models. Alibaba’s decision to move upward in scale marks a deliberate strategic choice, highlighting both its technical capabilities and commitment to trillion-parameter research.

How large is Qwen3-Max and what are its context limits?

How does Qwen3-Max perform against other models?

Benchmarks show it outperforms Qwen3-235B-A22B-2507 and competes strongly with Claude Opus 4, Kimi K2, and Deepseek-V3.1 across SuperGPQA, AIME25, LiveCodeBench v6, Arena-Hard v2, and LiveBench.

What is the pricing structure for usage?

Alibaba Cloud applies tiered token-based pricing:

This model is cost-efficient for smaller tasks but scales up significantly in price for long-context workloads.

How does the closed-source approach impact adoption?

Unlike earlier Qwen releases, this model is not open-weight. Access is restricted to APIs and partner platforms. This choice highlights Alibaba’s commercialization focus but may slow broader adoption in research and open-source communities

Key Takeaways

Summary

Qwen3-Max-Preview sets a new scale benchmark in commercial LLMs. Its trillion-parameter design, 262K context length, and strong benchmark results highlight Alibaba’s technical depth. Yet the model’s closed-source release and steep tiered pricing create a question for broader accessibility.


Check out the Qwen Chat and Alibaba Cloud API. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Alibaba AI Unveils Qwen3-Max Preview: A Trillion-Parameter Qwen Model with Super Fast Speed and Quality appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Qwen3-Max Alibaba 大型语言模型 LLM AI Trillion-Parameter Long Context 人工智能 大模型
相关文章