cs.AI updates on arXiv.org 09月05日
SalientFusion:创新性零样本食物识别方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为SalientFusion的零样本食物识别方法,通过去除背景冗余和解决角色混淆,以及减少语义偏差,在多个基准数据集上取得最优结果。

arXiv:2509.03873v1 Announce Type: cross Abstract: Food recognition has gained significant attention, but the rapid emergence of new dishes requires methods for recognizing unseen food categories, motivating Zero-Shot Food Learning (ZSFL). We propose the task of Compositional Zero-Shot Food Recognition (CZSFR), where cuisines and ingredients naturally align with attributes and objects in Compositional Zero-Shot learning (CZSL). However, CZSFR faces three challenges: (1) Redundant background information distracts models from learning meaningful food features, (2) Role confusion between staple and side dishes leads to misclassification, and (3) Semantic bias in a single attribute can lead to confusion of understanding. Therefore, we propose SalientFusion, a context-aware CZSFR method with two components: SalientFormer, which removes background redundancy and uses depth features to resolve role confusion; DebiasAT, which reduces the semantic bias by aligning prompts with visual features. Using our proposed benchmarks, CZSFood-90 and CZSFood-164, we show that SalientFusion achieves state-of-the-art results on these benchmarks and the most popular general datasets for the general CZSL. The code is avaliable at https://github.com/Jiajun-RUC/SalientFusion.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

食物识别 零样本学习 SalientFusion 深度学习 语义偏差
相关文章