cs.AI updates on arXiv.org 09月05日
稀疏自动编码器扩展与神经算子可解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将神经网络表示统一问题视为稀疏模型恢复问题,并引入一种框架扩展稀疏自动编码器至提升空间和无限维函数空间,从而实现大型神经算子的机制可解释性。通过对比SAE、提升-SAE和SAE神经算子的推理和训练动态,本文强调了提升和算子模块如何引入有益的归纳偏置,实现快速恢复、平滑概念恢复的改进,以及在不同分辨率上的鲁棒推理。

arXiv:2509.03738v1 Announce Type: cross Abstract: We frame the problem of unifying representations in neural models as one of sparse model recovery and introduce a framework that extends sparse autoencoders (SAEs) to lifted spaces and infinite-dimensional function spaces, enabling mechanistic interpretability of large neural operators (NO). While the Platonic Representation Hypothesis suggests that neural networks converge to similar representations across architectures, the representational properties of neural operators remain underexplored despite their growing importance in scientific computing. We compare the inference and training dynamics of SAEs, lifted-SAE, and SAE neural operators. We highlight how lifting and operator modules introduce beneficial inductive biases, enabling faster recovery, improved recovery of smooth concepts, and robust inference across varying resolutions, a property unique to neural operators.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

稀疏自动编码器 神经算子 可解释性 神经网络表示 机器学习
相关文章