cs.AI updates on arXiv.org 09月05日
长序列预测:多尺度模式分解与多标记模式识别
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种解决长序列预测中固定长度输入瓶颈的方法,通过多尺度模式分解和多标记模式识别神经网络,实现输入长度扩大至10倍,提高预测精度至38%,且降低模型复杂度。

arXiv:2407.15869v2 Announce Type: replace-cross Abstract: Short fixed-length inputs are the main bottleneck of deep learning methods in long time-series forecasting tasks. Prolonging input length causes overfitting, rapidly deteriorating accuracy. Our research indicates that the overfitting is a combination reaction of the multi-scale pattern coupling in time series and the fixed focusing scale of current models. First, we find that the patterns exhibited by a time series across various scales are reflective of its multi-periodic nature, where each scale corresponds to specific period length. Second, We find that the token size predominantly dictates model behavior, as it determines the scale at which the model focuses and the context size it can accommodate. Our idea is to decouple the multi-scale temporal patterns of time series and to model each pattern with its corresponding period length as token size. We introduced a novel series-decomposition module(MPSD), and a Multi-Token Pattern Recognition neural network(MTPR), enabling the model to handle \textit{inputs up to $10\times$ longer}. Sufficient context enhances performance(\textit{38% maximum precision improvement}), and the decoupling approach offers \textit{Low complexity($0.22\times$ cost)} and \textit{high interpretability}.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

长序列预测 多尺度模式分解 多标记模式识别 模型复杂度 预测精度
相关文章