cs.AI updates on arXiv.org 09月05日
神经符号LLM推理:语言选择影响推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了神经符号LLM推理中,语言选择对推理能力的影响。通过对比四种形式语言在三个数据集和七个LLM上的表现,发现语言选择既影响语法推理也影响语义推理,并分析了不同LLM间的差异。

arXiv:2509.04083v1 Announce Type: new Abstract: Large language models (LLMs) achieve astonishing results on a wide range of tasks. However, their formal reasoning ability still lags behind. A promising approach is Neurosymbolic LLM reasoning. It works by using LLMs as translators from natural to formal languages and symbolic solvers for deriving correct results. Still, the contributing factors to the success of Neurosymbolic LLM reasoning remain unclear. This paper demonstrates that one previously overlooked factor is the choice of the formal language. We introduce the intermediate language challenge: selecting a suitable formal language for neurosymbolic reasoning. By comparing four formal languages across three datasets and seven LLMs, we show that the choice of formal language affects both syntactic and semantic reasoning capabilities. We also discuss the varying effects across different LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经符号LLM 推理能力 语言选择 形式语言 LLM
相关文章