cs.AI updates on arXiv.org 09月05日
扩散模型提升航空冲突检测与解决
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Diffusion-AC的新型航空冲突解决框架,结合扩散概率模型,有效提升决策灵活性,减少空中碰撞。

arXiv:2509.03550v1 Announce Type: new Abstract: In the context of continuously rising global air traffic, efficient and safe Conflict Detection and Resolution (CD&R) is paramount for air traffic management. Although Deep Reinforcement Learning (DRL) offers a promising pathway for CD&R automation, existing approaches commonly suffer from a "unimodal bias" in their policies. This leads to a critical lack of decision-making flexibility when confronted with complex and dynamic constraints, often resulting in "decision deadlocks." To overcome this limitation, this paper pioneers the integration of diffusion probabilistic models into the safety-critical task of CD&R, proposing a novel autonomous conflict resolution framework named Diffusion-AC. Diverging from conventional methods that converge to a single optimal solution, our framework models its policy as a reverse denoising process guided by a value function, enabling it to generate a rich, high-quality, and multimodal action distribution. This core architecture is complemented by a Density-Progressive Safety Curriculum (DPSC), a training mechanism that ensures stable and efficient learning as the agent progresses from sparse to high-density traffic environments. Extensive simulation experiments demonstrate that the proposed method significantly outperforms a suite of state-of-the-art DRL benchmarks. Most critically, in the most challenging high-density scenarios, Diffusion-AC not only maintains a high success rate of 94.1% but also reduces the incidence of Near Mid-Air Collisions (NMACs) by approximately 59% compared to the next-best-performing baseline, significantly enhancing the system's safety margin. This performance leap stems from its unique multimodal decision-making capability, which allows the agent to flexibly switch to effective alternative maneuvers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

航空交通 冲突检测与解决 深度学习 扩散模型 航空安全
相关文章