Physics World 09月04日
科学家利用钻石量子传感器发现高温超导镍酸盐的明确证据
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

中国科学院物理研究所的物理学家们使用基于钻石的量子传感器,在高压力下发现了双层镍酸盐材料中首次明确实验证据,表明存在迈斯纳效应——超导性的标志。该发现可能推动开发可在高压条件下运行的高灵敏度量子探测器。超导体在低于临界转变温度Tc时导电无阻力,迈斯纳效应是材料排斥内部磁场的表现,这是超导的重要标志。镍酸盐被认为是一种新型高温超导体,但此前只在高压下显示出超导迹象。研究团队使用氮空位中心作为原位量子传感器,在高压下对双层La3Ni2O7-δ进行了成像,证实了迈斯纳效应的存在。

🔬 研究人员使用钻石量子传感器,在高压力下首次明确观测到双层镍酸盐材料中的迈斯纳效应,这是超导性的关键标志。

🧲 迈斯纳效应表现为材料排斥内部磁场,使磁铁悬浮,是超导体的重要特征。此前在镍酸盐中观测到超导迹象需要极端高压条件。

🌟 研究团队采用氮空位中心作为原位量子传感器,成功对高压下的双层La3Ni2O7-δ进行成像,证实了其超导特性。

🔥 镍酸盐被认为是一种新型高温超导体,其超导机制可能与铜氧化物超导体不同,这一发现为研究高温超导提供了新平台。

🔬 研究人员通过掺杂镥,提升了镍酸盐样品的质量,使迈斯纳效应信号显著增强,为后续研究提供了更可靠的实验基础。

Physicists at the Chinese Academy of Sciences (CAS) have used diamond-based quantum sensors to uncover what they say is the first unambiguous experimental evidence for the Meissner effect – a hallmark of superconductivity – in bilayer nickelate materials at high pressures. The discovery could spur the development of highly sensitive quantum detectors that can be operated under high-pressure conditions.

Superconductors are materials that conduct electricity without resistance when cooled to below a certain critical transition temperature Tc. Apart from a sharp drop in electrical resistance, another important sign that a material has crossed this threshold is the appearance of the Meissner effect, in which the material expels a magnetic field from its interior (diamagnetism). This expulsion creates such a strong repulsive force that a magnet placed atop the superconducting material will levitate above it.

In “conventional” superconductors such as solid mercury, the Tc is so low that the materials must be cooled with liquid helium to keep them in the superconducting state. In the late 1980s, however, physicists discovered a new class of superconductors that have a Tabove the boiling point of liquid nitrogen (77 K). These “unconventional” or high-temperature superconductors are derived not from metals but from insulators containing copper oxides (cuprates).

Since then, the search has been on for materials that superconduct at still higher temperatures, and perhaps even at room temperature. Discovering such materials would have massive implications for technologies ranging from magnetic resonance imaging machines to electricity transmission lines.

Enter nickel oxides

In 2019 researchers at Stanford University in the US identified nickel oxides (nickelates) as additional high-temperature superconductors. This created a flurry of interest in the superconductivity community because these materials appear to superconduct in a way that differs from their copper-oxide cousins.

Among the nickelates studied, La3Ni2O7-δ (where δ can range from 0 to 0.04) is considered particularly promising because in 2023, researchers led by Meng Wang of China’s Sun Yat-Sen University spotted certain signatures of superconductivity at a temperature of around 80 K. However, these signatures only appeared when crystals of the material were placed in a device called a diamond anvil cell (DAC). This device subjects samples of material to extreme pressures of more than 400 GPa (or 4 × 106 atmospheres) as it squeezes them between the flattened tips of two tiny, gem-grade diamond crystals.

The problem, explains Xiaohui Yu of the CAS’ Institute of Physics, is that it is not easy to spot the Meissner effect under such high pressures. This is because the structure of the DAC limits the available sample volume and hinders the use of highly sensitive magnetic measurement techniques such as SQUID. Another problem is that the sample used in the 2023 study contains several competing phases that could mix and degrade the signal of the La3Ni2O7-δ.

Nitrogen-vacancy centres embedded as in-situ quantum sensors

In the new work, Yu and colleagues used nitrogen-vacancy (NV) centres embedded in the DAC as in-situ quantum sensors to track and image the Meissner effect in pressurized bilayer La3Ni2O7-δ. This newly developed magnetic sensing technique boasts both high sensitivity and high spatial resolution, Yu says. What is more, it fits perfectly into the DAC high-pressure chamber.

Next, they applied a small external magnetic field of around 120 G. Under these conditions, they measured the optically detected magnetic resonance (ODMR) spectra of the NV centres point by point. They could then extract the local magnetic field from the resonance frequencies of these spectra. “We directly mapped the Meissner effect of the bilayer nickelate samples,” Yu says, noting that the team’s image of the magnetic field clearly shows both a diamagnetic region and a region where magnetic flux is concentrated.

Weak demagnetization signal

The researchers began their project in late 2023, shortly after receiving single-crystal samples of La3Ni2O7-δ from Wang. “However, after two months of collecting data, we still had no meaningful results,” Yu recalls. “From these experiments, we learnt that the demagnetization signal in La3Ni2O7-δ crystals was quite weak and that we needed to improve either the nickelate sample or the sensitivity of the quantum sensor.”

To overcome these problems, they switched to using polycrystalline samples, enhancing the quality of the nickelate samples by doping them with praseodymium to make La2PrNi2O7. This produced a sample with an almost pure bilayer structure and thus a much stronger demagnetization signal. They also used shallow NV centres implanted on the DAC cutlet (the smaller face of the two diamond tips).

“Unlike the NV centres in the original experiments, which were randomly distributed in the pressure-transmitting medium and have relatively large ODMR widths, leading to only moderate sensitivity in the measurements, these shallow centres are evenly distributed and well aligned, making it easier for us to perform magnetic imaging with increased sensitivity,” Yu explains.

These improvements enabled the team to obtain a demagnetization signal from the La2PrNi2O7 and La3Ni2O7-δ samples, he tells Physics World. “We found that the diamagnetic signal from the La2PrNi2O7 samples is about five times stronger than that from the La3Ni2O7-δ ones prepared under similar conditions – a result that is consistent with the fact that the Pr-doped samples are of a better quality.”

Physicist Jun Zhao of Fudan University, China, who was not involved in this work, says that Yu and colleagues’ measurement represents “an important step forward” in nickelate research. “Such measurements are technically very challenging, and their success demonstrates both experimental ingenuity and scientific significance,” he says. “More broadly, their result strengthens the case for pressurized nickelates as a new platform to study high-temperature superconductivity beyond the cuprates. It will certainly stimulate further efforts to unravel the microscopic pairing mechanism.”

As well as allowing for the precise sensing of magnetic fields, NV centres can also be used to accurately measure many other physical quantities that are difficult to measure under high pressure, such as strain and temperature distribution. Yu and colleagues say they are therefore looking to further expand the application of these structures for use as quantum sensors in high-pressure sensing.

They report their current work in National Science Review.

The post Quantum sensors reveal ‘smoking gun’ of superconductivity in pressurized bilayer nickelates appeared first on Physics World.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高温超导 迈斯纳效应 镍酸盐 量子传感器 高压物理
相关文章