cs.AI updates on arXiv.org 09月04日
深度学习助力器官类器官分割与追踪
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于深度学习的器官类器官分割与追踪方法,通过LGBP-OrgaNet模型,实现了对器官类器官的准确分割、追踪和量化,为肿瘤治疗和药物筛选等领域提供有力工具。

arXiv:2509.03221v1 Announce Type: cross Abstract: Organoids replicate organ structure and function, playing a crucial role in fields such as tumor treatment and drug screening. Their shape and size can indicate their developmental status, but traditional fluorescence labeling methods risk compromising their structure. Therefore, this paper proposes an automated, non-destructive approach to organoid segmentation and tracking. We introduced the LGBP-OrgaNet, a deep learning-based system proficient in accurately segmenting, tracking, and quantifying organoids. The model leverages complementary information extracted from CNN and Transformer modules and introduces the innovative feature fusion module, Learnable Gaussian Band Pass Fusion, to merge data from two branches. Additionally, in the decoder, the model proposes a Bidirectional Cross Fusion Block to fuse multi-scale features, and finally completes the decoding through progressive concatenation and upsampling. SROrga demonstrates satisfactory segmentation accuracy and robustness on organoids segmentation datasets, providing a potent tool for organoid research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 器官类器官 分割与追踪 肿瘤治疗 药物筛选
相关文章