cs.AI updates on arXiv.org 09月04日
IMTS建模新方法:MissTSM性能优异
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的模型无关且无需插补的IMTS建模方法MissTSM,通过实验证明其在处理大量缺失值和缺乏简单周期结构的数据时表现优异,适用于多种应用场景。

arXiv:2502.15785v2 Announce Type: replace-cross Abstract: Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

IMTS建模 MissTSM 数据缺失 性能比较
相关文章