cs.AI updates on arXiv.org 09月04日
Soft-TransFormers:创新持续学习策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Soft-TransFormers的全新持续学习方法,通过优化软网络选择和权重,实现任务自适应,并在视觉和语言类增量学习场景中取得最佳性能。

arXiv:2411.16073v2 Announce Type: replace-cross Abstract: Inspired by the Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network for each task. During sequential training in CL, a well-initialized Soft-TF mask optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks, while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on the Vision Transformer (ViT) and the Language Transformer (Bert) demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across Vision and Language Class Incremental Learning (CIL) scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

持续学习 Soft-TransFormers 增量学习 任务自适应 视觉和语言
相关文章